
  

  
Abstract—This paper presents a prototype implementation of 

a multipurpose network platform which could be easily adapted 
to accommodate various types of future networks. Our design is 
motivated by the objective to overcome the drawbacks of 
existing whitebox networking devices in flexibility and 
performance points of view. Instead of relying on two extreme 
ends; ASIC or general purpose CPU, we propose a 
multipurpose platform which combines the moderate flexibility 
and rich features for fast packet processing of 
high-performance network processor, and almost the same 
flexibility as a general purpose CPU and the offloading 
functions such as security and deep packet inspection of 
multicore processor. We also show how we could use the 
multipurpose platform as a router with deep packet inspection 
feature by running an open source routing suite as control 
function, and provide some performance numbers for the 
system. 
 

Index Terms—Software defined network (SDN), whitebox 
networking.  
 

I. INTRODUCTION 
Most of network devices are provided as an integrated 

solution; hardware platform and its control software are 
bundled and tightly coupled together. The inside of hardware 
system is not disclosed out as well, so it is almost impossible 
to extend the features or add new features in the system 
without receiving supports from the manufactures of the 
products. The closed ecosystem in the network device 
markets has brought up lots of complaints from the operators 
of the devices and also from the new manufactures who are 
willing to seek new opportunities in the area. 

The concept of whitebox networking has started to be 
adopted in networking area as an effort to remove the 
software’s dependency to hardware platform. The term 
“whitebox” originally was used to call a personal computer 
or server without a registered brand name which is assembled 
using off-the-shelf parts. We could run any operating systems 
on the whitebox which could be bought independently. The 
operating system could be decoupled from the hardware 
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platform by using the whitebox. The same approach, 
decoupling of software from hardware, has been tried to the 
network systems by several startup companies [1], [2]. The 
software companies could develop their own software 
without much of dependencies on hardware platform. Pica8 
developed Xorplus by extending XORP (eXtensible Open 
Routing Protocol) and then run it on whitebox systems 
developed by Pronto Systems which was merged with Pica8 
in Feburary 2012. Vyatta also developed Vyatta OS by 
extending Quagga, another open source routing suites, and 
then run it on the whitebox systems that they built on their 
own. The whitebox systems of Pica8 and Vyatta are based on 
Broadcom ASIC and x86 CPU, respectively.  

This whitebox networking approach, however, has its own 
drawbacks. The whiteboxes based on commodity ASICs are 
limited in developing new features except the functions 
which are hardwired when they are manufactured. Therefore, 
the applications that they could develop on the system are 
quite limited. The general purpose CPU-based whiteboxes, 
on the other hand, are very flexible in implementing new 
features but they have some drawbacks in performance point 
of view, which makes them be applied to only small size 
networks.  

Software defined networking (SDN) has advanced the 
whitebox networking model much more by providing a clear 
isolation of control plane software from the hardware 
platform with the standardized open protocol between them, 
OpenFlow [3], [4]. This SDN concept, making switches be 
dummy and moving most of the intelligence to outside 
controller, opened the new possibilities to network device 
market by allowing anyone to develop their ideas and apply 
them to the real networks; theoretically the control plane does 
not depend on the specifics of hardware platforms.  

The simplicity and flexibility of SDN, however, preclude 
any advanced features in the data plane on the contrary, 
which is not easy for one SDN node to have differentiated 
features from the others. Therefore, big players in 
networking devices, Cisco, Juniper, HP, etc. are providing 
the ways to overcome this shortcoming while making the best 
use of the features that they have in their own devices. For 
example, Cisco announced its new SDN strategy, Open 
Networking Environment (ONE) in recent CiscoLive [5]. 
The ONE provides more open interfaces in both of 
northbound and southbound directions to fully utilize the 
existing features of network devices.  

When we judge from the recent trends in the networking 
devices, the whitebox networking model is expected to be 
evolved into the direction in which the whitebox itself is 
flexible to include new features while having interfaces with 
the control functions. We, therefore, present the design of a 
whitebox system that could be used for various purposes: 
standalone devices such as firewall, QoS box, and IP router, 
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or SDN switch node which could be controlled by SDN 
controller.  

The remainder of this paper is organized as follows. In 
Section II, we present our multipurpose network platform 
and discuss distinguishing features of the architecture. Then, 
we discuss a router example running XORP [6], an open 
source routing suite, on the proposed multipurpose network 
platform and show performance results of our 
implementation in Section III. We finally conclude in Section 
IV. 

 

II. MULTIPURPOSE NETWORK PLATFORM 

A. Design Goals 
We came up with our design goals according to our 

discussion in section I as follows. 
Flexibility and Programmability: It should be possible and 

not be difficult to add new features or to extend existing 
features. 

Performance: Performance of the system should be 
affected as little as possible by adding new features.  

We also considered the following requirements more 
specifically to satisfy the goals: 

 Packet classification and SDN extensibility by equipping 
with TCAM 
 General purpose processor level high programmability 
 Half-duplex 40 Gbps of basic packet forwarding 
performance (64-byte packet size) 
 Deep packet inspection (DPI) ability for application 
awareness 
 Half-duplex 10 Gbps of DPI performance through 
Regular Expression (RegEx) engine (64-byte packet size) 

B. Architecture 
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Fig. 1. Proposed multipurpose platform block diagram. 

 
The proposed multipurpose network platform is composed 

of three major processors as shown in Fig. 1, one network 
processor (NP) and two multicore processors. The 
combination of NP and multicore processor is the best 
solution when we consider the design goals and requirements 
discussed in Subsection II-A since NP is generally fit for fast 
packet processing and  multicore processor can augment the 
NP in fast packet processing and also the other specific 
functions such as security processing and DPI. 

There are several commercially available NPs and 
multicore processors, so several combinations could be 

viable to work as a multipurpose network platform. The 
extensive system testing is needed to prove which 
combination is the best but it requires lots of efforts, time and 
money. We leave the more extensive comparison of different 
combinations for further study. Among various off-the-shelf 
NPs and multicore processors, we chose EZchip's NP-4 [7] 
and Cavium's CN5860 [8] for NP and multicore processor, 
respectively. The main features which we considered in NP-4 
are as follows: 

1) Powerful Search Engine: NP-4 provides a search engine 
supporting four different types of data structures:direct 
access table, hash table, tree and multibit trie. So 
programmers do not need to implement their own search 
algorithms, which could be drawbacks of the NP when 
we want to have our own specific search algorithm but 
the data structures are enough to cover most of existing 
network applications. 

2) Microcode Development Environment: NP-4 is 
provided with an integrated microcode development 
environment called EZdesign which supports the cycle 
accurate simulation capability. Microcode developers 
could develop new functions without having real target 
systems with the help of the tool. The tool also makes the 
debugging easy by providing complete views of system 
internals such as the values of registers and memory. 

3) Easy Programming Model: Single-image programming 
model with no parallel programming and multithreading 
could drastically reduce the burden of NP-4 
programmers. 

4) High Performance: The packet processing performance 
of NP-4 is enough with integrated traffic management 
functions: half duplex 100 Gbps. There are several other 
NPs which have more processing power [9] and EZChip 
is also planning half-duplex 200 Gbps NP, NP-5 [10], 
but the performance of NP-4 was enough at the time of 
system design and is still high enough for general 
network systems. 

5) TCAM Interface: NP-4 supports a TCAM interface 
which is useful for fast lookups through large tables with 
wildcards such as multi-field packet classification tables 
and access control list (ACL). 

The main features which we considered in CN5860 are as 
follows: 

1) Flexible Allocation of Multicores: CN5860 has 16 
cnMIPS64 cores, Cavium’s custom implementation of 
MIPS64, which could be flexibly allocated in different 
ways. Since each core has its own memory management 
unit (MMU) and translation lookaside buffer (TLB), 
each cnMIPS64 core could be flexibly allocated for an 
operating system or data plane code. 

2) Simple Executive API: CN5860 could be used for fast 
packet processing without running operating system 
using the Simple Executive application programming 
interface (API). It is a Hardware Abstraction Layer 
(HAL) in the form of an API to the underlying hardware 
units. 

3) Hardware Acceleration Units: There are multiple 
hardware acceleration units which offload the 
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cnMIPS64 cores reducing software overhead and 
complexity. These acceleration units include: 

 Per-core security unit  
 32 RegEx search engines for deep packet inspection 
 Compression/decompression engine 

We could use NP-4 for most of fast packet processing: 
search of various lookup tables including TCAM, traffic 
management and load balancing data traffic to two CN5860s. 
The uses of CN5860s are two fold: both of control plane and 
data plane processing. The control plane includes the system 
initialization and application programs such as the routing 
suite for a router system. The data plane in CN5860 includes 
DPI and security encapsulation/decapsulation. The CN5860, 
which is connected to NP-4 through PCI bus, works as a 
control plane processor as well as a data plane processor. We 
call the CN5860, the upper CN5860 in Fig. 1, as the master 
CN5860 and the other as the slave CN5860. 

 
Fig. 2. Picture of multipurpose platform. 

 
The NP-4 and CN5860s are connected with each other as 

shown in Fig. 1 and Fig. 2. There are four types of main 
interconnections among them: PCI bus between upper 
CN5860 and NP-4 for initialization and configuration of 
NP-4 (type 1), 1 Gbps Ethernet interface between upper 
CN5860 and NP-4 for exchanging control and exception 
packets (type 2), 10 Gbps interface between NP-4 and each 
CN5860 via Cortina’s IXF18201 10 Gbps Ethernet MAC 
controller [11] for delivering data packets (type 3), and 10 
Gbps direct SPI 4.2 channel between two CN5860s for 
transferring both of data packets and control messages (type 
4). NP-4 is also connected to one 10 Gbps Ethernet interface 
and ten 1 Gbps Ethernet interfaces, and each CN5860 has 1 
Gbps management Ethernet interface. 

The NP-4 does the first fast packet processing from 
network interfaces and could distribute the packets into the 
two CN5860s after balancing the load between them only if 
any further fast packet processing is needed. For example, the 
basic IPv4/IPv6 packet forwarding is processed in NP-4 and 
DPI processing is processed in CN5860s as shown in Section 
III-A. There are three possible packet processing paths in the 
platform as follows. 

 Local Turnaround Traffic Path: 1 Gbps or 10 Gbps 
Ethernet input interface  ingress and egress fast packet 
processing in NP-4  1 Gbps or 10 Gbps Ethernet output 
interface 
 Full Data Traffic Path: 1 Gbps or 10 Gbps Ethernet input 
interface  ingress fast packet processing part I in NP-4 

 ingress fast packet processing part II in one of two 
CN5860s  egress fast packet processing in NP-4  1 
Gbps or 10 Gbps Ethernet output interface 
 Control Traffic Path: 1 Gbps or 10 Gbps Ethernet input 
interface  packet exception to master CN5860  slow 
packet processing in controller core in master CN5860  
basic header manipulation processing in NP-4 to send the 
packets out  1 Gbps or 10 Gbps Ethernet output 
interface 

Normal data traffic that does not need any further fast 
packet processing such as DPI, security processing, etc. 
would take the Local Turnaround Traffic Path and the data 
traffic that needs those further packet processing would go 
through the Full Data Traffic Path. In case of this Full Data 
Traffic Path, NP-4 should distribute packets between the two 
CN5860. In addition, the cores in each CN5860 could be load 
balanced using an explicit instruction header that CN5860 
requires to do that. The instruction header could be used to 
send additional information to indicate special packet 
treatment in CN5860 as well. The control packets such as 
routing protocol packets and error packets would take the 
Control Traffic Path. 

 

III.  A ROUTER PROTOTYPE BASED ON THE OPEN SOURCE 
ROUTING SUITE 

In this section, we will show a prototype IP router with 
deep packet inspection capability based on the multipurpose 
platform presented in section II. 

A. Architecture Overview 
The first thing we should do is the functional allocation 

among the NP-4 and two CN5860s when we want to 
implement a new system based on the proposed multipurpose 
platform. Table I shows the functional allocation for our 
prototypes design. Then we also need to decide how to 
allocate the cores in each CN5860. Both of CN5860s need at 
least one core for running control plane softwares. The two 
routing control planes are not equal but rather the one in the 
master CN5860 runs the main programs of control plane and 
the other in the slave CN5860 runs some agent programs. 
Then the rest of cores except the control plane cores are used 
for data plane processing. The resulting core allocation for 
each CN5860 in our prototype is as follows: 1 core for 
control plane software and 15 cores for deep packet 
inspection. Fig. 3 shows the software architecture of the 
prototype IP router system. 

TABLE I: FUNCTIONAL ALLOCATION OF THE PROTOTYPE IP ROUTER 

Components Functions 

NP-4 
Data plane processing part I: IPv4/IPv6 
forwarding lookup, packet classification and 
load balancing 

Master CN5860 Router control plane software: the main part of 
XORP Data plane processing part II: DPI 

Slave CN5860 Router control plane software: a few XORP 
processes Data plane processing part II: DPI 
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Fig. 3. Prototype IP router based on the open source routing suite, XORP.

B. Control Plane Software Architecture 
We used XORP for our base control plane software. 

XORP supports most of existing IPv4/IPv6 unicast and 
multicast routing protocols but not all though. XORP also has 
some more useful features such as XORP inter-process 
communication (XIPC) mechanism based on the XORP 
resource locator (XRL) and IPC finder process, which makes 
it possible for XORP processes communicate each other even 
when they are located in remote sites. The detailed 
in fo rma t ion  abou t  XORP can  be  found  in  [6 ] . 

NP-4 driver is integrated into forwarding engine 
abstraction (FEA) process of XORP so that forwarding 
entries which learned by routing protocols could be added, 
modified or deleted from the forwarding table which resides 
in NP-4. Then two new processes, classification manager and 
DPI manager, were added for managing packet classification 
rules and DPI rules as XORP processes. The classification 
manager and the DPI manager manage packet classification 
rules of the tables in NP-4 and signature tables of CN5860s. 

We also implement a virtual ethernet driver on eth1 
interface of the master CN5860. The virtual ethernet driver 
manages logical interfaces of the system. Since the master 
CN5860 is indirectly connected to the interfaces, one 10 
Gbps interface and ten 1 Gbps interfaces, through one 
Ethernet interface, eth1, a virtual interface per each logical 
interface of the external interfaces should be created so that 
XORP could know that the logical interfaces are directly 
connected. 

C. Data Plane Software Architecture 
IPv4 packet forwarding and deep packet inspection are 

processed in the data plane software. More advanced packet 
processing is possible by adding more features in NP-4 and 
CN5860 but we just assume NP-4 handles all the IPv4 
forwarding and then CN5860 processes DPI when a packet is 
delivered to them. 

When a packet enters NP-4, NP-4 decides how it will treat 
the packet by looking up the classification table first. It is also 
decided whether the packet is a control packet or not. If the 
packet is a control packet, the packet is delivered to the 
master CN5860, or more exactly the controller core of it, 
through the type 2 interface which is described in section II-B. 
When the packet is taking the Control Traffic Path, an 
additional header is needed to inform the input port 
information to the virtual ethernet driver. 

For the data packets, the decision whether the packet needs 
DPI processing in CN5860 or not is made with a flag bit in 
the result of packet classification. If a packet does not need 
DPI processing, then the packet is taking the Local 
Turnaround Traffic Path which includes IPv4 multibit-trie 
forwarding table and ARP table lookups. Otherwise, the 
packet will take the Full Data Traffic Path. 

When the packets are transferred to a CN5860, the packets 
should be load balanced with the total of 30 cores in two 
CN5860s, or 15 cores in each CN5860. The load balancing 
algorithm is not the focus of our prototype system, we use 
simple hash-based load balancing algorithm. So according to 
the hash value, the core of each CN5860 is decided. 

Then the DPI is performed for the incoming packets in 
each core of the two CN5860s. In order to test the worst case 
performance, every packet is going through the DPI process. 
The performance measure is discussed in the next subsection. 

D. Performance Measurement 
The performance of the system is restricted by the two 

CN5860s’ performance since the processing power of NP-4, 
full duplex 50 Gbps, is way higher than the total sum of 
network interfaces, full duplex 20 Gbps. Therefore, we give 
only the performance result of the DPI processing in this 
paper and more in-depth performance tests are left for further 
study. 

We use one 10 Gbps interface to generate 60 different 
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traffic flows at the rate of 10 Gbps with the packet size of 64 
bytes. The headers of 60 different flows are tweaked to have 
different hash values so that the flows could be load balanced 
equally to all 30 cores. We also insert different text signatures 
per each flow and we have a signature table, deterministic 
finite automaton (DFA) table, with 100 signatures in each 
CN5860.We could have about a total of half duplex 10 Gbps 
throughput performance in the system with the above test 
environment. 

 
IV. CONCLUSIONS 

We present a design of multipurpose platform which is 
composed of one EZchips NP-4 and two Caviums CN5860 
multicore processors. An example IP router design is also 
provided with DPI feature. We show that our system can 
process 5 Gbps input traffic with DPI processing. We argue 
that the proposed design could be used for various purposes 
utilizing its flexibility and processing power. We will study 
further about the possible applications on the platform. 
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