

Abstract—This paper presents a prototype implementation of

a multipurpose network platform which could be easily adapted
to accommodate various types of future networks. Our design is
motivated by the objective to overcome the drawbacks of
existing whitebox networking devices in flexibility and
performance points of view. Instead of relying on two extreme
ends; ASIC or general purpose CPU, we propose a
multipurpose platform which combines the moderate flexibility
and rich features for fast packet processing of
high-performance network processor, and almost the same
flexibility as a general purpose CPU and the offloading
functions such as security and deep packet inspection of
multicore processor. We also show how we could use the
multipurpose platform as a router with deep packet inspection
feature by running an open source routing suite as control
function, and provide some performance numbers for the
system.

Index Terms—Software defined network (SDN), whitebox
networking.

I. INTRODUCTION
Most of network devices are provided as an integrated

solution; hardware platform and its control software are
bundled and tightly coupled together. The inside of hardware
system is not disclosed out as well, so it is almost impossible
to extend the features or add new features in the system
without receiving supports from the manufactures of the
products. The closed ecosystem in the network device
markets has brought up lots of complaints from the operators
of the devices and also from the new manufactures who are
willing to seek new opportunities in the area.

The concept of whitebox networking has started to be
adopted in networking area as an effort to remove the
software’s dependency to hardware platform. The term
“whitebox” originally was used to call a personal computer
or server without a registered brand name which is assembled
using off-the-shelf parts. We could run any operating systems
on the whitebox which could be bought independently. The
operating system could be decoupled from the hardware

Manuscript received October 2, 2012; revised November 5, 2012. This

work was supported in part by the the MKE (The Ministry of Knowledge
Economy), Korea, under the ITRC (Information Technology Research
Center) support program supervised by the NIPA (National IT Industry
Promotion Agency. (NIPA-2012-H0301-12- 1004).

Nam-Seok Ko is with the Electronics and Telecommunications Research
Institute (ETRI), Daejeon, Republic of Korea and Korea Advanced Institute
of Science & Technology (KAIST), Daejeon, Republic of Korea (e-mail:
nsko@etri.re.kr).

Hwanjo Heo, Sung-Jin Moon, Sung-Kee Noh and Jong-Dae Park are with
ETRI, Daejeon, Republic of Korea (e-mail: {hwanjo, sjmoon, sknoh,
jdpark@etri.re.kr).

Hong-Shik Park is with the Department of Electrical Engineering, Korea
Advanced Institute of Science & Technology (KAIST), Daejeon, Repbulic of
Korea (e-mail: hspark@ee.kaist.ac.kr).

platform by using the whitebox. The same approach,
decoupling of software from hardware, has been tried to the
network systems by several startup companies [1], [2]. The
software companies could develop their own software
without much of dependencies on hardware platform. Pica8
developed Xorplus by extending XORP (eXtensible Open
Routing Protocol) and then run it on whitebox systems
developed by Pronto Systems which was merged with Pica8
in Feburary 2012. Vyatta also developed Vyatta OS by
extending Quagga, another open source routing suites, and
then run it on the whitebox systems that they built on their
own. The whitebox systems of Pica8 and Vyatta are based on
Broadcom ASIC and x86 CPU, respectively.

This whitebox networking approach, however, has its own
drawbacks. The whiteboxes based on commodity ASICs are
limited in developing new features except the functions
which are hardwired when they are manufactured. Therefore,
the applications that they could develop on the system are
quite limited. The general purpose CPU-based whiteboxes,
on the other hand, are very flexible in implementing new
features but they have some drawbacks in performance point
of view, which makes them be applied to only small size
networks.

Software defined networking (SDN) has advanced the
whitebox networking model much more by providing a clear
isolation of control plane software from the hardware
platform with the standardized open protocol between them,
OpenFlow [3], [4]. This SDN concept, making switches be
dummy and moving most of the intelligence to outside
controller, opened the new possibilities to network device
market by allowing anyone to develop their ideas and apply
them to the real networks; theoretically the control plane does
not depend on the specifics of hardware platforms.

The simplicity and flexibility of SDN, however, preclude
any advanced features in the data plane on the contrary,
which is not easy for one SDN node to have differentiated
features from the others. Therefore, big players in
networking devices, Cisco, Juniper, HP, etc. are providing
the ways to overcome this shortcoming while making the best
use of the features that they have in their own devices. For
example, Cisco announced its new SDN strategy, Open
Networking Environment (ONE) in recent CiscoLive [5].
The ONE provides more open interfaces in both of
northbound and southbound directions to fully utilize the
existing features of network devices.

When we judge from the recent trends in the networking
devices, the whitebox networking model is expected to be
evolved into the direction in which the whitebox itself is
flexible to include new features while having interfaces with
the control functions. We, therefore, present the design of a
whitebox system that could be used for various purposes:
standalone devices such as firewall, QoS box, and IP router,

Design of a Multipurpose Whitebox Networking Platform

Nam-Seok Ko, Hwanjo Heo, Sung-Jin Moon, Sung-Kee Noh, Jong-Dae Park, and Hong-Shik Park

International Journal of Future Computer and Communication, Vol. 2, No. 4, August 2013

313DOI: 10.7763/IJFCC.2013.V2.175

or SDN switch node which could be controlled by SDN
controller.

The remainder of this paper is organized as follows. In
Section II, we present our multipurpose network platform
and discuss distinguishing features of the architecture. Then,
we discuss a router example running XORP [6], an open
source routing suite, on the proposed multipurpose network
platform and show performance results of our
implementation in Section III. We finally conclude in Section
IV.

II. MULTIPURPOSE NETWORK PLATFORM

A. Design Goals
We came up with our design goals according to our

discussion in section I as follows.
Flexibility and Programmability: It should be possible and

not be difficult to add new features or to extend existing
features.

Performance: Performance of the system should be
affected as little as possible by adding new features.

We also considered the following requirements more
specifically to satisfy the goals:

 Packet classification and SDN extensibility by equipping
with TCAM
 General purpose processor level high programmability
 Half-duplex 40 Gbps of basic packet forwarding
performance (64-byte packet size)
 Deep packet inspection (DPI) ability for application
awareness
 Half-duplex 10 Gbps of DPI performance through
Regular Expression (RegEx) engine (64-byte packet size)

B. Architecture

XAUI 0

1 GEs

XAUI 1

10 GE

XAUI 2

CN5860

Control function
manager & agent
control messages

SPI4.2

NP-4 XAUI 3 SPI4.2

Control protocol and
exception packets

NP initialization & configuration

CN5860

…

eth1
HSGMII0

spi0

spi0

PCI

Fast Packet
Processing Part I

Load Balancing

Control Function
Manager

Fast Packet
Processing Part II

Control Function
Agent

Fast Packet
Processing Part II

Fig. 1. Proposed multipurpose platform block diagram.

The proposed multipurpose network platform is composed

of three major processors as shown in Fig. 1, one network
processor (NP) and two multicore processors. The
combination of NP and multicore processor is the best
solution when we consider the design goals and requirements
discussed in Subsection II-A since NP is generally fit for fast
packet processing and multicore processor can augment the
NP in fast packet processing and also the other specific
functions such as security processing and DPI.

There are several commercially available NPs and
multicore processors, so several combinations could be

viable to work as a multipurpose network platform. The
extensive system testing is needed to prove which
combination is the best but it requires lots of efforts, time and
money. We leave the more extensive comparison of different
combinations for further study. Among various off-the-shelf
NPs and multicore processors, we chose EZchip's NP-4 [7]
and Cavium's CN5860 [8] for NP and multicore processor,
respectively. The main features which we considered in NP-4
are as follows:

1) Powerful Search Engine: NP-4 provides a search engine
supporting four different types of data structures:direct
access table, hash table, tree and multibit trie. So
programmers do not need to implement their own search
algorithms, which could be drawbacks of the NP when
we want to have our own specific search algorithm but
the data structures are enough to cover most of existing
network applications.

2) Microcode Development Environment: NP-4 is
provided with an integrated microcode development
environment called EZdesign which supports the cycle
accurate simulation capability. Microcode developers
could develop new functions without having real target
systems with the help of the tool. The tool also makes the
debugging easy by providing complete views of system
internals such as the values of registers and memory.

3) Easy Programming Model: Single-image programming
model with no parallel programming and multithreading
could drastically reduce the burden of NP-4
programmers.

4) High Performance: The packet processing performance
of NP-4 is enough with integrated traffic management
functions: half duplex 100 Gbps. There are several other
NPs which have more processing power [9] and EZChip
is also planning half-duplex 200 Gbps NP, NP-5 [10],
but the performance of NP-4 was enough at the time of
system design and is still high enough for general
network systems.

5) TCAM Interface: NP-4 supports a TCAM interface
which is useful for fast lookups through large tables with
wildcards such as multi-field packet classification tables
and access control list (ACL).

The main features which we considered in CN5860 are as
follows:

1) Flexible Allocation of Multicores: CN5860 has 16
cnMIPS64 cores, Cavium’s custom implementation of
MIPS64, which could be flexibly allocated in different
ways. Since each core has its own memory management
unit (MMU) and translation lookaside buffer (TLB),
each cnMIPS64 core could be flexibly allocated for an
operating system or data plane code.

2) Simple Executive API: CN5860 could be used for fast
packet processing without running operating system
using the Simple Executive application programming
interface (API). It is a Hardware Abstraction Layer
(HAL) in the form of an API to the underlying hardware
units.

3) Hardware Acceleration Units: There are multiple
hardware acceleration units which offload the

International Journal of Future Computer and Communication, Vol. 2, No. 4, August 2013

314

cnMIPS64 cores reducing software overhead and
complexity. These acceleration units include:

 Per-core security unit
 32 RegEx search engines for deep packet inspection
 Compression/decompression engine

We could use NP-4 for most of fast packet processing:
search of various lookup tables including TCAM, traffic
management and load balancing data traffic to two CN5860s.
The uses of CN5860s are two fold: both of control plane and
data plane processing. The control plane includes the system
initialization and application programs such as the routing
suite for a router system. The data plane in CN5860 includes
DPI and security encapsulation/decapsulation. The CN5860,
which is connected to NP-4 through PCI bus, works as a
control plane processor as well as a data plane processor. We
call the CN5860, the upper CN5860 in Fig. 1, as the master
CN5860 and the other as the slave CN5860.

Fig. 2. Picture of multipurpose platform.

The NP-4 and CN5860s are connected with each other as

shown in Fig. 1 and Fig. 2. There are four types of main
interconnections among them: PCI bus between upper
CN5860 and NP-4 for initialization and configuration of
NP-4 (type 1), 1 Gbps Ethernet interface between upper
CN5860 and NP-4 for exchanging control and exception
packets (type 2), 10 Gbps interface between NP-4 and each
CN5860 via Cortina’s IXF18201 10 Gbps Ethernet MAC
controller [11] for delivering data packets (type 3), and 10
Gbps direct SPI 4.2 channel between two CN5860s for
transferring both of data packets and control messages (type
4). NP-4 is also connected to one 10 Gbps Ethernet interface
and ten 1 Gbps Ethernet interfaces, and each CN5860 has 1
Gbps management Ethernet interface.

The NP-4 does the first fast packet processing from
network interfaces and could distribute the packets into the
two CN5860s after balancing the load between them only if
any further fast packet processing is needed. For example, the
basic IPv4/IPv6 packet forwarding is processed in NP-4 and
DPI processing is processed in CN5860s as shown in Section
III-A. There are three possible packet processing paths in the
platform as follows.

 Local Turnaround Traffic Path: 1 Gbps or 10 Gbps
Ethernet input interface ingress and egress fast packet
processing in NP-4 1 Gbps or 10 Gbps Ethernet output
interface
 Full Data Traffic Path: 1 Gbps or 10 Gbps Ethernet input
interface ingress fast packet processing part I in NP-4

 ingress fast packet processing part II in one of two
CN5860s egress fast packet processing in NP-4 1
Gbps or 10 Gbps Ethernet output interface
 Control Traffic Path: 1 Gbps or 10 Gbps Ethernet input
interface packet exception to master CN5860 slow
packet processing in controller core in master CN5860
basic header manipulation processing in NP-4 to send the
packets out 1 Gbps or 10 Gbps Ethernet output
interface

Normal data traffic that does not need any further fast
packet processing such as DPI, security processing, etc.
would take the Local Turnaround Traffic Path and the data
traffic that needs those further packet processing would go
through the Full Data Traffic Path. In case of this Full Data
Traffic Path, NP-4 should distribute packets between the two
CN5860. In addition, the cores in each CN5860 could be load
balanced using an explicit instruction header that CN5860
requires to do that. The instruction header could be used to
send additional information to indicate special packet
treatment in CN5860 as well. The control packets such as
routing protocol packets and error packets would take the
Control Traffic Path.

III. A ROUTER PROTOTYPE BASED ON THE OPEN SOURCE
ROUTING SUITE

In this section, we will show a prototype IP router with
deep packet inspection capability based on the multipurpose
platform presented in section II.

A. Architecture Overview
The first thing we should do is the functional allocation

among the NP-4 and two CN5860s when we want to
implement a new system based on the proposed multipurpose
platform. Table I shows the functional allocation for our
prototypes design. Then we also need to decide how to
allocate the cores in each CN5860. Both of CN5860s need at
least one core for running control plane softwares. The two
routing control planes are not equal but rather the one in the
master CN5860 runs the main programs of control plane and
the other in the slave CN5860 runs some agent programs.
Then the rest of cores except the control plane cores are used
for data plane processing. The resulting core allocation for
each CN5860 in our prototype is as follows: 1 core for
control plane software and 15 cores for deep packet
inspection. Fig. 3 shows the software architecture of the
prototype IP router system.

TABLE I: FUNCTIONAL ALLOCATION OF THE PROTOTYPE IP ROUTER

Components Functions

NP-4
Data plane processing part I: IPv4/IPv6
forwarding lookup, packet classification and
load balancing

Master CN5860 Router control plane software: the main part of
XORP Data plane processing part II: DPI

Slave CN5860 Router control plane software: a few XORP
processes Data plane processing part II: DPI

International Journal of Future Computer and Communication, Vol. 2, No. 4, August 2013

315

RIB

Unicast/Multicast
Routing Protocols

Classification
Manger

SNMP IPC
Finder

Router
Manager CLI

Kernel

DPI
Manager

Core #1 Core #15

Pkt
Processing

Core #3Core #2

Pkt
Processing

Master Octeon Processor

Kernel

Classification Agent

Slave Octeon Processor

Core #1 Core #15

Pkt
Processing

Core #3Core #2

Pkt
Processing

data traffic data traffic

Protocol packet &
exception packets

Manager-Agent
Message Exchange

spi0 spi0eth1

xaui2 xaui3

xaui0 xaui1

10G x 1 1G x 10

HSGMI0

NP-4

Pkt
Processing

Pkt
Processing

Pkt
Processing

Pkt
Processing

… …

Load balancing
Forwarding Lookup

Classification

DPI Agent
FEA

w/ NP4 driver & application

Fig. 3. Prototype IP router based on the open source routing suite, XORP.

B. Control Plane Software Architecture
We used XORP for our base control plane software.

XORP supports most of existing IPv4/IPv6 unicast and
multicast routing protocols but not all though. XORP also has
some more useful features such as XORP inter-process
communication (XIPC) mechanism based on the XORP
resource locator (XRL) and IPC finder process, which makes
it possible for XORP processes communicate each other even
when they are located in remote sites. The detailed
in fo rma t ion abou t XORP can be found in [6] .

NP-4 driver is integrated into forwarding engine
abstraction (FEA) process of XORP so that forwarding
entries which learned by routing protocols could be added,
modified or deleted from the forwarding table which resides
in NP-4. Then two new processes, classification manager and
DPI manager, were added for managing packet classification
rules and DPI rules as XORP processes. The classification
manager and the DPI manager manage packet classification
rules of the tables in NP-4 and signature tables of CN5860s.

We also implement a virtual ethernet driver on eth1
interface of the master CN5860. The virtual ethernet driver
manages logical interfaces of the system. Since the master
CN5860 is indirectly connected to the interfaces, one 10
Gbps interface and ten 1 Gbps interfaces, through one
Ethernet interface, eth1, a virtual interface per each logical
interface of the external interfaces should be created so that
XORP could know that the logical interfaces are directly
connected.

C. Data Plane Software Architecture
IPv4 packet forwarding and deep packet inspection are

processed in the data plane software. More advanced packet
processing is possible by adding more features in NP-4 and
CN5860 but we just assume NP-4 handles all the IPv4
forwarding and then CN5860 processes DPI when a packet is
delivered to them.

When a packet enters NP-4, NP-4 decides how it will treat
the packet by looking up the classification table first. It is also
decided whether the packet is a control packet or not. If the
packet is a control packet, the packet is delivered to the
master CN5860, or more exactly the controller core of it,
through the type 2 interface which is described in section II-B.
When the packet is taking the Control Traffic Path, an
additional header is needed to inform the input port
information to the virtual ethernet driver.

For the data packets, the decision whether the packet needs
DPI processing in CN5860 or not is made with a flag bit in
the result of packet classification. If a packet does not need
DPI processing, then the packet is taking the Local
Turnaround Traffic Path which includes IPv4 multibit-trie
forwarding table and ARP table lookups. Otherwise, the
packet will take the Full Data Traffic Path.

When the packets are transferred to a CN5860, the packets
should be load balanced with the total of 30 cores in two
CN5860s, or 15 cores in each CN5860. The load balancing
algorithm is not the focus of our prototype system, we use
simple hash-based load balancing algorithm. So according to
the hash value, the core of each CN5860 is decided.

Then the DPI is performed for the incoming packets in
each core of the two CN5860s. In order to test the worst case
performance, every packet is going through the DPI process.
The performance measure is discussed in the next subsection.

D. Performance Measurement
The performance of the system is restricted by the two

CN5860s’ performance since the processing power of NP-4,
full duplex 50 Gbps, is way higher than the total sum of
network interfaces, full duplex 20 Gbps. Therefore, we give
only the performance result of the DPI processing in this
paper and more in-depth performance tests are left for further
study.

We use one 10 Gbps interface to generate 60 different

International Journal of Future Computer and Communication, Vol. 2, No. 4, August 2013

316

traffic flows at the rate of 10 Gbps with the packet size of 64
bytes. The headers of 60 different flows are tweaked to have
different hash values so that the flows could be load balanced
equally to all 30 cores. We also insert different text signatures
per each flow and we have a signature table, deterministic
finite automaton (DFA) table, with 100 signatures in each
CN5860.We could have about a total of half duplex 10 Gbps
throughput performance in the system with the above test
environment.

IV. CONCLUSIONS

We present a design of multipurpose platform which is
composed of one EZchips NP-4 and two Caviums CN5860
multicore processors. An example IP router design is also
provided with DPI feature. We show that our system can
process 5 Gbps input traffic with DPI processing. We argue
that the proposed design could be used for various purposes
utilizing its flexibility and processing power. We will study
further about the possible applications on the platform.

REFERENCES
[1] Pica8 Xorplus OS. [Online]. Available:

http://www.pica8.com/products/.
[2] Vyatta OS. [Online]. Available: http://www.vyatta.com.
[3] Openflow switch specification. [Online]. Available: http://www.

openflowswitch.org/documents/openflow-spec-v1.1.0.pdf.
N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no.
2, pp. 69–74, Mar. 2008.
The cisco open networking environment. [Online]. Available:
http://www.cisco. com/web/solutions/trends/open network
environment/index.html.

[4] M. Handley, O. Hodson, and E. Kohler, “XORP: an open platform for
network research,” SIGCOMM Comput. Commun. Rev., vol. 33, no. 1,
pp. 53–57, Jan. 2003.

[5] C. Albrecht, R. Hagenau, E. Maehle, A. doring, and A. Herkersdorf, “A
comparison of parallel programming models of network processors,”
PARS, vol. 1, march 2004, pp. 390–399.

[6] Cavium Octeon cn58xx hardware reference manual. [Online].
Available: http://support.cavium.com/.

[7] FP3: The 400g network processor. [Online]. Available:
http://www.alcatellucent. com/fp3/.

[8] EZchip’s 200-gigabit network processor with integrated traffic
management. [Online]. Available:
http://www.ezchip.com/products.htm.

[9] IXF18201: 10 Gbps Ethernet media access controller. [Online].
Available: http://www.cortina-systems.com/products/.

 Nam-Seok Ko received the B.S. degree in computer
engineering from Chonbuk National University,
Jeonju, South Korea, in 1998 and the M.S. degree in
information and communications engineering from
Korea Advanced Institute of Science and Technology
(KAIST), Daejeon, South Korea, in 2000. In 2000, he
joined Electronics and Telecommunication Research
Institute (ETRI), Daejeon, South Korea. Currently he
is working towards the Ph.D. degree with the

Department of Information and Communications Engineering, KAIST,
Daejeon, South Korea. His research interests include network architecture,
network protocols, traffic engineering and software defined networking.

Hwanjo Heo received the B.S. degree in electrical
engineering from Korea University, Seoul, South
Korea in 2004, and M.S. degree in computer science
from Purdue University, West Lafayette, IN, in 2009.
He is currently a researcher with Electronic and
Telecommunications Research Institute (ETRI),
Daejeon, South Korea. His research interests include
network measurement, network protocols, and
software defined networking.

Sung-Jin Moon received the B.S. and M.S. degrees in
electrical engineering from Hanyang University,
Seoul, South Korea, in 1992 and 1994, respectively. In
1994, he joined Electronics and Telecommunication
Research Institute (ETRI), Daejeon, South Korea. His
research interests include network architecture,
network protocols, traffic engineering and software
defined networking.

Sung-Kee Noh received the B.S. degree in
electrical engineering from Hanyang University,
Seoul, South Korea in 1990, M.S. degree in
Industrial Engineering from Pohang University of
Science and Technology (POSTECH), Pohang,
South Korea, in 1992, and Ph.D. degree in
Chungnam National University, Daejeon, South
Korea, in 2006. He is currently a researcher with
Electronic and Telecommunications Research
Institute (ETRI), Daejeon, South Korea. His

research interests include network measurement, network protocols, and
software defined networking.

Jong-Dae Park received his B.S, M.S. and Ph.D.
degrees in electronic engineering from Yeungnam
University, South Korea, 1985, 1987 and 1994,
respectively. He was a research fellow in the
department of electrical and electronics, Toyohashi
University of Technology, Japan from 1995 to 1996.
In 1997, he joined Electronics and
Telecommunication Research Institute (ETRI),
Daejeon, South Korea, where he is currently with the

Net-computing Convergence Team as a team leader of the engineering staff.
His current research includes packet forwarding engine and software defined
networking.

Hong-Shik Park received the BS degree from Seoul
National University, Seoul, South Korea, in 1977, and
the M.S. and Ph.D. degrees from Korea Advanced
Institute of Science and Technology (KAIST),
Daejeon, South Korea, in electrical engineering in
1986 and 1995, respectively. In 1977, he joined
Electronics and Telecommunication Research
Institute (ETRI) and worked on the development of
the TDX digital switching system family, including

TDX--1, TDX--1A, TDX--1B, TDX--10, and ATM switching systems. In
1998, he moved to Information and Communications University, Daejeon,
South Korea as a member of faculty. Currently he is a professor of the
Department of Electrical and Electronics Engineering, KAIST, Daejeon,
South Korea. His research interests are network architecture, network
protocols, and performance analysis of telecommunication systems. He is a
member of the IEEE, IEEK, and KICS of South Korea.

International Journal of Future Computer and Communication, Vol. 2, No. 4, August 2013

317

